
1. STATIC AND QUASI-STATIC FIELDS 

Abstract — A numerical method for analysing eddy current 
magnetic field in high-speed moving conductors using local 
discontinuous Galerkin (LDG) method is presented. A typical 
numerical example is chosen to illustrate the accuracy and 
non-oscillatory nature of the method for a convection 
dominated case. The simulation results using the proposed 
algorithm are validated using standard finite element method 
(FEM). 

I. INTRODUCTION 

When electromagnetic field computation involves high-
speed moving conductors, eddy currents due to the 
movement of conductors should be taken into account and 
the common mathematical simulation model is usually 
derived from convection-dominated equation [1]. The 
standard finite element method (FEM) cannot solve high 
speed moving conductor problems effectively unless very 
fine meshes, which are computationally expensive to 
process, are introduced [2-3]. Both the mixed FEM [4] and 
operator splitting method [5] introduce some upwind 
mechanism to treat the first-order term in the equation. 
Reference [6] adopts the finite analytic element method and 
recently [7] uses the multiscale combined radial basis 
function collocation method to derive the numerical 
solution of the problem.  

During this decade, the discontinuous Galerkin (DG) 
method for the numerical solution of hyperbolic partial 
differential equations (PDEs) and related local discon-
tinuous Galerkin (LDG) method for parabolic PDEs and 
elliptic PDEs have been recognized to be effective 
numerical tools to address convection-dominated problems 
[8-10]. Moreover, these methods can be realized in high-
order elements easily. They can also treat the convection 
term properly by suitably defining the numerical flux in the 
scheme. In this paper, the formulation of a LDG method is 
presented for the steady state convection dominated 
problem and numerical tests are carried out to illustrate the 
advantages of this method. 

II. LDG SCHEME 

Consider the steady state convection-diffusion boundary 
value problem in Cartesian coordinates: 
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where   is bounded in ;dR d=1, 2, 3, gf ,
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 are known 

functions and u  is the unknown function to be solved 
numerically. In this paper, only the linear case is discussed, 

that is, f


 is linear about u. However, the magnitude of the 

Jacobian nfu

 )/(  can be large. It is well known that for 

such case the solution will have a steep boundary layer near 
 , which is difficult to simulate accurately by standard 

FEM [2-3]. 
For simplicity of discussion, define the k-th order 

discontinuous finite element space as:  
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where   is the bounded region in dR ; T  is the triangulati
on of  ; h is the maximum side length of the triangulation. 

Take any two neighboring elements K  and K  from 

T , and the common side   KK  ; n


 and n


 are, 

respectively, the unit outward normal vectors from the 

interior of K  and K  at any point of  , as shown in Fig. 

1. Let w be the respective trace of w  from the interior of 
K . Define }}{{ , ]][[  the average and jump of related 
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 Fig. 1. Illustration of the notations. 

 
Rewrite the partial differential equation in (1) into 
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Then the LDG scheme for (1) reads [11-12] 
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for any hh VVvw  2),(


; where hû , hq̂ and f̂  are the 

numerical fluxes which are defined by 
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in the interior of the domain by 
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on the boundary of the domain  , where   is an 
estimation of the biggest eigen value of the Jacobian 

nfu

 )/( , )/1(11 hOC   and 12C


 is a vector in 2R  of 

length 1/2. The definition of the numerical flux nf

ˆ  on 

  can be found in [12]. Note that the numerical flux f̂  is 

nothing but the local Lax-Friedrichs numerical flux and it 
can be taken in other forms [13]. 

III. NUMERICAL RESULTS 

A classical one-dimensional convection-diffusion 
equation defined in [0,1] is set as 
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to verify the local discontinuous Galerkin method proposed 
in this paper.  

Take k=0, then the exact solution for (8) is  
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In the following, (8) and (9) are solved numerically using 
the LDG method. For small p, the convergence order of the 
L2 error by the LDG method using k-th order polynomial 
space is given for k=1, 2, 3, 4 and 5. For large p, the 
numerical result computed by the LDG method gives a 
good illustration of the advantage of this method.  

Table I gives the L2 error of the numerical solution uh to 
the exact solution u in (9) for p=-10. It can be seen clearly 
that when the k-th order polynomial space is used as the test 
and the trial space for the LDG method, the L2 error order of 
convergence is k+1, which is optimal according to the 
classical finite element analysis result [3]. 
 

TABLE I 
CONVERGENCE ORDER FOR P=-10 OF THE LDG METHOD 

k # of cells L2 error of u - uh
 L2 error order 

20 2.7983E-003 - 
40 7.2823E-004 1.9421 
80 1.8535E-004 1.9742 

1 

160 4.6727E-005 1.9879 

20 1.1869E-004 - 
40 1.5323E-005 2.9533 
80 1.9411E-006 2.9808 

2 

160 2.4409E-007 2.9914 

20 3.7498E-006 - 
40 2.4104E-007 3.9595 
80 1.5231E-008 3.9842 

3 

160 9.5643E-010 3.9932 

20 9.4571E-008 - 
40 3.0319E-009 4.9631 
80 9.5657E-011 4.9862 

4 

160 3.0013E-012 4.9942 

20 1.9825E-009 - 
40 3.1732E-011 5.9653 
80 5.0007E-013 5.9877 

5 

160 9.6945E-015 5.6888 

For large p, the boundary value problem (8) is a 
convection-dominated problem in which the first order term 
needs to be treated properly when designing numerical 
schemes. It can be seen that the LDG method gives a good 
numerical solution even when p is large. 

 

 
Fig. 2. p=-100, number of cells=40, numerical solution by the LDG 

method with k=1 and the linear FEM versus the exact solution. 
 

 
Fig. 3. p=-500, number of cells=40, numerical solution by the LDG 

method with k=1 versus the exact solution. 
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